Algorithmic stratification of the conjugacy problem in Miller’s groups
نویسندگان
چکیده
We discuss the complexity of conjugacy problem in Miller’s groups. We stratify the groups in question and show that for “almost all”, in some explicit sense, elements, the conjugacy search problem is decidable in cubic time. It is worth noting that a Miller’a group may have undecidable conjugacy search problem; our results show that “hard” instances of the problem comprise a negligibly small part of the group.
منابع مشابه
Generic Complexity of the Conjugacy Problem in HNN-Extensions and Algorithmic Stratification of Miller's Groups
We discuss time complexity of The Conjugacy Problem in HNN-extensions of groups, in particular, in Miller’s groups. We show that for “almost all”, in some explicit sense, elements, the Conjugacy Problem is decidable in cubic time. It is worth noting that the Conjugacy Problem in a Miller group may have be undecidable. Our results show that “hard” instances of the problem comprise a negligibly s...
متن کاملThe isomorphism problem for residually torsion-free nilpotent groups
Both the conjugacy and isomorphism problems for finitely generated nilpotent groups are recursively solvable. In some recent work, the first author, with a tiny modification of work in the second author’s thesis, proved that the conjugacy problem for finitely presented, residually torsion-free nilpotent groups is recursively unsolvable. Here we complete the algorithmic picture by proving that t...
متن کاملSome connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups
Let $G$ be a finite group. We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$. In this paper we characterize solvable groups $G$ in which the derived covering number is finite.
متن کاملA Logspace Solution to the Word and Conjugacy problem of Generalized Baumslag-Solitar Groups
Baumslag-Solitar groups were introduced in 1962 by Baumslag and Solitar as examples for finitely presented non-Hopfian two-generator groups. Since then, they served as examples for a wide range of purposes. As Baumslag-Solitar groups are HNN extensions, there is a natural generalization in terms of graph of groups. Concerning algorithmic aspects of generalized Baumslag-Solitar groups, several d...
متن کاملOn the Regular Power Graph on the Conjugacy Classes of Finite Groups
emph{The (undirected) power graph on the conjugacy classes} $mathcal{P_C}(G)$ of a group $G$ is a simple graph in which the vertices are the conjugacy classes of $G$ and two distinct vertices $C$ and $C'$ are adjacent in $mathcal{P_C}(G)$ if one is a subset of a power of the other. In this paper, we describe groups whose associated graphs are $k$-regular for $k=5,6$.
متن کامل